Imparting universal linguistic inductive biases via meta-learning

Language description:
Constraint ranking:
Set of consonants:
Set of vowels:
Consonant for insertion:
Vowel for insertion:
Input Correct output Meta-initialized
model's output
Randomly-initialized
model's output
rOau .rO.a.u. .rO.a.u. .rO.a.u.
axxaO .a.xa.O. .a.xa.O. .a.xa.O.
rxxa .xa. .xa. .xa.
axrxu .a.xu. .a.xu. .a.xu.
ttxaO .xa.O. .xa.O. .xa.O.
Training examples seen:





Input Correct output Meta-initialized
model's output
Randomly-initialized
model's output
rOau .rO.a.u. .rO.a.u. .rO.a.u.
axxaO .a.xa.O. .a.xa.O. .a.xa.O.
rxxa .xa. .xa. .xa.
axrxu .a.xu. .a.xu. .a.xu.
ttxaO .xa.O. .xa.O. .xa.O.
Training examples seen:

Generalization

Use multiple tabs: Click on the type of generalization you want to study.

Sandbox

People can enter their own training set and test set and see how the model learns it.