
Tom McCoy: Research statement (for a linguistics audience)

1 One-page summary of research agenda
What type of computational system is the mind? I approach this question from the perspective of language,
spanning the divide between linguistics and natural language processing (NLP). I focus on two core topics:
reconciling neural and symbolic computation and characterizing the learning biases that guide language
acquisition. My work on these topics spans across linguistic subfields including phonology, morphology,
syntax, and semantics, and it also connects to areas of cognitive science outside of linguistics.
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Figure 1: Understanding the relevance of neural net-
work N for linguistic phenomenon P .

Neural vs. symbolic computation: For millennia, lin-
guists have viewed language as a symbolic system, in
which discrete units (e.g., words) are combined in struc-
tured ways (e.g., in syntax trees). Recently, however,
NLP has seen tremendous progress with a very differ-
ent type of system: neural networks. These models
encode information in vectors of continuous numbers
and process those vectors using mathematical operations.
Though they seem poorly suited for language, neural net-
works are the state of the art for a range of linguistic tasks
(e.g., machine translation), far outperforming approaches
motivated by symbolic linguistic theories.

Figure 1 illustrates my approach for understanding whether and how neural networks should inform
linguistics. We have shown (Section 2.1.ii) that some neural networks, despite their state-of-the-art status,
fail to capture even the most basic aspects of compositional semantics (Fig. 1a; e.g., treating the owl saw
the fox as synonymous with the fox saw the owl). However, other neural networks (Section 2.1.iii) display
substantial linguistic abilities, generating novel syntactic and morphological combinations (Fig. 1b). Do
these successes require us to revise linguistic theory to build in neural computation? We have analyzed
neural networks trained to perform symbolic tasks (Section 2.2.i) and have shown that these models do not
necessitate revisions to symbolic conceptions of language because their vector representations implicitly
implement symbolic analyses of syntax (Fig. 1c).
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Linguistic learning biases: Using human experiments and com-
putational simulations, I study what learning biases guide the acqui-
sition of structural properties of syntax and phonology, with plans
to expand into morphology (Figure 2). In human experiments fo-
cusing on recursion, we have shown that people robustly extrap-
olate the recursive pattern of center embedding beyond the sen-
tence sizes they have seen (Section 3.i). In ongoing work, we
are studying which learning biases drive this generalization (e.g.,
a general simplicity bias, or more specific biases for headedness
and context-freeness). In computational simulations, we have
shown that generic neural network architectures fail to generalize
in human-like ways for several syntactic phenomena, but neural
networks built around hierarchical structure generalize correctly,
suggesting that human-like generalization requires a hierarchical
bias (Section 3.ii). We have also developed a new method that enables the creation of neural networks
with targeted linguistic biases (Section 3.iii); we have applied this method to syllabification and plan to use
it to evaluate hypotheses about the learning biases underlying acquisition of word order and reduplication.
Through such experiments, we aim to investigate which formal properties of language are innate and which
are learned. Using these insights about how people acquire language so rapidly, we also plan to reduce the
data hunger of NLP models, enabling NLP to better handle languages that have little available training data.
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2 Understanding the linguistic relevance of neural networks
In this section, I discuss in more detail the approach outlined in Figure 1.

2.1 Behaviorally, do neural networks capture the phenomena that linguists seek to explain?

i. Methodology: Targeted behavioral evaluation Neural networks perform well on the standard tests
used by the engineering community, but these tests are formed from naturally-occurring corpora that might
mainly contain “easy” examples that can be solved using shallow heuristics rather than by mastering lan-
guage. To overcome the ambiguity of standard evaluations, I perform targeted, linguistically-motivated
evaluations that reveal which linguistic phenomena a model has captured.
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Figure 3: Inference models succeed
on examples that can be solved
with a shallow heuristic, but fail
when attention to syntax is needed.

ii. Finding: Brittle heuristics In the task of natural language infer-
ence, a model must determine whether one sentence entails another. In
principle, inference requires an understanding of syntax. The evaluation
set that we created, HANS (McCoy, Pavlick, and Linzen 2019), tests
whether inference models capture syntax, or if they instead use three
shallow heuristics, such as assuming that sentence S entails any sentence
whose words all appear in S (e.g., assuming that the owl saw the fox
means the same thing as the fox saw the owl). Even BERT, a state-of-
the-art model which scores close to humans on a standard evaluation,
performs poorly on HANS (Figure 3), consistent with the hypothesis that it has adopted this heuristic. Thus,
despite appearances to the contrary, these models are likely not relevant to linguistic theory (Figure 1a).

iii. Finding: Generative competence Current language models can generate grammatical, coherent text.
It is unclear how they do so: do they have true generative abilities, or—as critics claim—are they simply
copying from their training set? In McCoy, Smolensky, Linzen, Gao, & Celikyilmaz (2023), we analyze
whether text generation models are overly reliant on copying. Here the conclusion is more positive than
with HANS: on a variety of linguistic levels, models show an impressive degree of novelty. For instance, the
model GPT-2 generated the sentence The Sarrats were lucky to have her as part of their lives, which includes
a novel plural word (Sarrats) accompanied by the proper syntactic consequences of this word’s plurality: a
plural verb, were, and a plural coreferential pronoun, their. Thus, some neural networks have a non-trivial
amount of generative competence (Figure 1b), motivating the focus of the next section: understanding how
such models represent linguistic structure.

2.2 Internally, how do neural networks represent symbolic structure?

Our behavioral evaluations of novelty discussed above give clear evidence that neural networks can process
language well; yet their representations are vectors of continuous values, which look very different from the
symbolic structures used in linguistic theory. How do neural networks encode linguistic structure in vector
space? The answer to this question determines how linguists should view the success of neural networks:
Either these models are implementing—and therefore supporting—existing theories, or they have discovered
a new approach to language that may require us to revise our theories to incorporate neural mechanisms.

i. Finding: Implicit symbolic structure Drawing on mathematical methods from cognitive science, we
have developed a technique for testing the hypothesis that models’ vector representations are implicitly
symbol structures (McCoy, Linzen, Dunbar, & Smolensky 2018). This approach has yielded symbolic
analyses that produce close approximations to models’ vector representations. For instance, models that
process words in linear order encode sequential positions (first, second...), while models that process words
in accordance with a tree encode tree positions (root, left child of root...). We can use our analyses to make
targeted interventions to modify a neural network’s output (Soulos, McCoy, Linzen, & Smolensky 2020),
verifying that the representational structure we have revealed is causally linked to model behavior.
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In Lepori & McCoy (2020), we analyzed a neural network in which each word’s representation is a single
vector that can in principle encode any feature(s) of the word’s context. We found that these representations
encode linguistic dependencies. For instance, himself in (1a) encodes politician, while him in (1b) encodes
person, showing that this model has implicitly learned to respect binding theory principles.
(1) a. The person believes that the politician loves himself.

b. The person believes that the politician loves him.
Such results show that, despite their apparent incompatibility with symbolic structure, at least some neu-
ral networks implicitly rediscover symbolic linguistic theories such as the basic binding theory principles.
Thus, these models in fact support existing views of language as a symbolic system (Figure 1c). Though
current work is still far from this goal, such insights from artificial neural networks might eventually help us
understand how language is encoded in the biological neural network of the brain.

3 Linguistic inductive biases in humans and machines
The research discussed above focuses on characterizing what computational class language belongs to (that
is, neural vs. symbolic computation). I also study the computational system deployed in language acquisi-
tion, focusing on inductive biases—the factors that guide how a learner learns from, and generalizes beyond,
experience. A learner’s inductive biases encompass both the characterization of the hypothesis space (e.g.,
a detailed notion of Universal Grammar, or a more general hypothesis space that has Merge as its only
language-specific component) and the process used to search that space (e.g., a constraint ranking algorithm
in Optimality Theory, or the numerical computations underlying the Tolerance Principle).

i. Finding: Extrapolation of recursion I study people’s inductive biases using psychological experi-
ments based on artificial language learning: train people on sentences from a specially-designed language,
and then test how they generalize. This work has produced the first robust demonstration that people extrap-
olate the recursive syntactic pattern of center embedding beyond the sentence sizes they have seen (McCoy,
Culbertson, Smolensky, & Legendre 2021), carefully avoiding the confounds that have arisen in prior work.
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Figure 4: A tree-structured neu-
ral network.

ii. Finding: Importance of a hierarchical inductive bias In Yedetore,
Frank, Linzen, and McCoy (2023), we analyzed neural network models
trained on utterances made by parents to their children in the CHILDES
corpus. Using this corpus allowed us to bring our models into closer con-
tact with linguistic questions, compared to previous models which were
trained on corpora that were not representative of what children acquire lan-
guage from (e.g., all of Wikipedia). We have used our CHILDES-trained
models to study English polar question formation (e.g., turning The dog
can bark into Can the dog bark?) because there are longstanding—but
controversial—claims that strong innate biases are necessary to make this
phenomenon learnable from the primary linguistic data that children re-
ceive. Both neural models that we tested (LSTMs and Transformers, two
very different state-of-the-art architectures) do not have such strong biases,
and they fail to learn the correct question-formation rule, bringing a new
type of empirical evidence to support the poverty-of-the-stimulus argument
that human language acquisition involves some strong syntactic biases.

How can we create models that better account for human-like generalization? Using synthetic datasets,
we found that a hierarchical bias—the bias often hypothesized to underlie acquisition of English polar
questions—can be imparted by using a tree-structured network (Figure 4), whose computations are guided
by a syntax tree rather than following linear order (McCoy, Frank, & Linzen 2020). In later work, we showed
that using tree-structured architectures also improves syntactic knowledge for models trained on natural text
(Lepori, Linzen, & McCoy 2020). These results point toward structured architectures as a viable path for
aligning models’ biases with humans’ biases.
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iii. New method: Targeted inductive biases via meta-learning Structured architectures can impart some
abstract inductive biases (e.g., formal universals), but they may not be flexible enough to impart all the biases
that we wish to study (e.g., substantive universals, which are harder to capture in an abstract architectural
structure). In McCoy, Grant, Smolensky, Griffiths, & Linzen (2020), we introduced a more flexible approach
based on meta-learning: We first instantiate our desired biases as a distribution over synthetic languages. A
neural network then meta-learns from languages sampled from this distribution to acquire our target biases;
in meta-learning, exposure to many languages teaches a model about the commonalities across languages,
enabling it to learn new languages more readily. We used this approach to impart biases that encode an
account of syllabification from Optimality Theory. A model with inductive biases resulting from meta-
learning learns syllabification patterns from only 200 examples, vs. 20,000 examples without such biases.
These biases also improved accuracy from 6% to 88% on targeted linguistic evaluations.

More recently, in McCoy & Griffiths (2023), we scaled up this approach to a new setting where we
distilled the syntactic priors of a Bayesian model into a neural network. The resulting system was able to
learn syntactic patterns from a small number of examples. It was also able to learn aspects of English syntax
from a naturalistic corpus, outperforming a standard neural network in several areas (such as extrapolating
recursive syntactic phenomena). These results provide strong evidence that our approach can create neural
networks with types of inductive biases traditionally described using symbolic linguistic theories.

The types of models that can be created with this method provide a new theory about the computational
structures that underlie language learning: strong inductive biases instantiated in a flexible neural network
system. Strong inductive biases account for rapid learning of linguistic patterns—one hallmark of language
in humans. The flexibility of the neural network substrate accounts for the ability to learn successfully
from unstructured naturalistic data—another key property of human language acquisition. Prior modeling
approaches have captured one but not both of these capacities: for instance, Bayesian models can learn
linguistic patterns from few examples but typically cannot learn tractably from large-scale naturalistic data,
while neural network systems can learn effectively from naturalistic data but require many examples. This
new meta-learning approach is the first approach that can capture both of these abilities, showing its promise
as a way to combine the complementary strengths of neural and symbolic theories of learning.

4 Conclusion
I combine linguistics and NLP to study how to computationally characterize the language faculty. First, I
analyze neural networks—which perform surprisingly well at NLP tasks, far outperforming linguistically-
motivated models—to assess whether and how they capture linguistic structure. Second, I use computational
modeling and experiments with human participants to investigate what inductive biases can explain human
language acquisition. By bringing linguistics and NLP into closer contact, I aim to elucidate the linguistic
relevance of advances in NLP, and to enable linguistics to better inform practical NLP technology.
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