
Overview
mmm

• The puzzle: How do recurrent neural networks (RNNs) use
vectors of continuous values to represent discrete symbolic
structures?

• Finding: RNNs trained on structure-dependent tasks learn to
implicitly implement tensor product representations.

Tensor Product Representations
mmm

• A principled method for representing compositional
symbolic structures in vector space (Smolensky 1990)

• Represent the input with pairs of fillers and roles:

3,7,6 = 3:first + 7:second + 6:third

• Each filler and role has a vector embedding

• The representation of the input is the sum of the
outer products of each and :

Tensor Product Decomposition

• Goal: Approximate an RNN’s learned encodings (such as E
below) with a tensor product representation

• Approach: (below, left) Train a model to generate tensor
product representations that are close to the RNN’s encodings

• Evaluation: (below, right) Pass this model’s outputs to the
RNN’s decoder

mmm

Role Schemes

Digit Sequence Experiments
mmm

• An RNN trained to copy can be approximated
almost perfectly:
• Model being approximated: Unidirectional RNN trained to

copy digit sequences
• Best role scheme: bidirectional (orange bar)

• Different tasks lead to different roles:
• Reversal favors right-to-left where copying favors left-to-right
• Bag-of-words works for sorting, which requires no structure

• The decoder determines the learned role scheme:
• 3 architectures: unidirectional, bidirectional, tree-based.
• We vary the encoder and decoder architecture. E.g., “Bi/Tree”

has a bidirectional encoder and tree-based decoder.

Sentence Encoder Experiments

• Compare outputs of classifiers applied to a sentence encoding
model and its tensor product approximation

• All 4 models are reasonably well approximated with non-
structure-sensitive bag-of-words roles, suggesting they do not
have robust representations of structure:

Conclusion
• RNNs trained on directly structure-dependent tasks can be

well-approximated by tensor-product representations, suggesting
that some form of this representation is their solution for
encoding compositional structure.

• 4 popular sentence encoding models did not display such clear
evidence of compositional structure

• Overall, tensor product decomposition is a versatile technique
for studying vector representations

Acknowledgments
• This material is based upon work supported by the NSF GRFP, an NSF INSPIRE grant, an

ERC grant (BOOTPHON), and ANR grants IEC, PSL*, GEOMPHON, USPC, and EFL. All
opinions are our own.

Link to paper
• https://openreview.net/pdf?id=BJx0sjC5FX

fi ri

fi ri ∑ fi ⊗ ri

RNNs implicitly implement tensor-product representations:
Uncovering compositionality in neural network representations

R. Thomas McCoy,1 Tal Linzen,1 Ewan Dunbar,2 and Paul Smolensky3,1
1Johns Hopkins University, 2CNRS - Université Paris Diderot - Sorbonne Paris Cité, 3Microsoft Research AI

5 6

7

4

3

2

1

+

3 r1 7 r2 6 r3
(1)

(2)

(3)

(4)

(5)
E

E

3 6

3 7 6

7

+

3 r1 7 r2 6 r3

E

3 7 6

3 1 1 6
Left-to-right 0 1 2 3
Right-to-left 3 2 1 0
Bidirectional (0,3) (1,2) (2,1) (3,0)
Wickelroles #_1 3_1 1_6 1_#
Tree L RLL RLR RR
Bag-of-words r0 r0 r0 r0

Tree used for
tree roles

5/1/2019 tpdn | Tensor product decomposition network

https://tommccoy1.github.io/tpdn/tpr_demo.html 8/9

There are several points to note about this graphic (all focusing on the unidirectional/unidirectional architecture):

As noted above, on the autoencoding task, the model appears to learn bidirectional roles that strongly favor the left-to-

right direction over the right-to-left direction.

By contrast, on the reversal task, the model learns right-to-left roles, with left-to-right roles performing poorly. This

makes sense given the backwards relationship between copying and reversal.

For the interleaving task, the model still learns bidirectional roles, but now neither single-direction role scheme (whether

left-to-right or right-to-left) works well on its own. This makes sense given that interleaving heavily depends on

representations of indices in both directions.

For the sorting task, all role schemes perform strongly. Most notably, the bag-of-words role scheme (which is essentially

the absence of structure) performs just as well as the other role schemes, whereas it fails miserably in the other three

tasks. This suggests that, for the sorting task, the model learns to ignore all sequence structure (since that structure is

irrelevant for the sorting task).

In many cases, these results show high accuracies for more than one role scheme. This happens because some role

schemes can be viewed as degenerate cases of other role schemes. For example, on the sorting task, all role schemes

perform well. We interpret this fact to mean that the sorting models use bag-of-words roles because, if a seq2seq model

can be approximated with bag-of-words roles, it is also possible to approximate it with any other role scheme by simply

making all of the role embedding vectors the same (thereby making that role scheme functionally equivalent to a bag-of-

words role scheme). Similarly, high accuracy with both right-to-left and bidirectional roles is indicative of right-to-left

roles (since right-to-left roles are a degenerate case of bidirectional roles, meaning that a model that can be approximated

well with right-to-left roles can also be approximated equally well with bidirectional roles). Therefore, we would only

conclude that a model is actually using bidirectional roles if we observe high accuracy with the bidirectional role scheme

and low accuracy with all other role schemes, which is what happens with the interleaving task.

Effect of architecture

Finally, we also investigate how the model architecture affects the learned representations. We investigate three model

topologies: unidirectional, bidirectional, and tree-based. Each topology can be used for the encoder and/or the decoder. The

following graphic shows, for a given task, how the encoder and decoder affect the learned representations. Each architecture is

denoted as encoder/decoder (e.g., "Bi/Tree" means a model with a bidirectional encoder and a tree-based decoder):

Effect of encoder/decoder structure on TPDN accuracy

There are two major things to notice from these graphics:

The model architecture does affect the learned representations. For example, on the autoencoding task, the

unidirectional/unidirectional model is approximated very well with bidirectional roles, while the tree/tree model is

Uni/Uni Uni/Bi Uni/Tree
0

1

Bi/Uni Bi/Bi Bi/Tree
0

1

Tree/Uni Tree/Bi Tree/Tree
0

1

Task:

Decoding
accuracy

Decoding
accuracy

Decoding
accuracy

Average
classification

accuracy

Model Type Training task
InferSent BiLSTM Natural Language Inference
Skip-thought LSTM Previous/next sentence prediction
SST Tree Sentiment prediction
SPINN Tree Natural Language Inference

L

RLL RLR
RR

5/1/2019 tpdn | Tensor product decomposition network

https://tommccoy1.github.io/tpdn/tpr_demo.html 7/9

Encoder: Decoder:

Copying

Type a sequence:

287679

287679

Reversal

Type a sequence:

287679

976782

Interleaving

Type a sequence:

287679

298776

Sorting

Type a sequence:

287679

267789

The left-to-right unidirectional roles also provide a good, but not quite as strong, approximation.

Meanwhile, the right-to-left unidirectional roles perform poorly.

This asymmetry suggests that the model is implementing what we call mildly bidirectional roles: the representations are

bidirectional in nature, but within this bidirectional role scheme the left-to-right direction is favored over the right-to-left

direction. This conclusion is in line with the observations made about the analogies above.

The fact that this copying RNN appears to be implementing bidirectional roles provides a possible explanation for why it

struggles with copying single-digit sequences. If a sequence is only a single digit long, then the bidirectional role scheme will

assign that digit the role (1,1). However, this role occurs very rarely in the training set, since there are so few single digits;

therefore, the RNN struggles with sequences involving this role.

Effect of training task

We can use the TPDN to delve deeper into different aspects of RNN training to see how those aspects affect the

representations that are learned. First, we can see how the training task affects the representations. So far we've focused on

one task (copying, aka autoencoding), but now we expand the set of tasks to include three others:

The following chart displays how the training task affects the learned representation (this chart also allows you to vary the

architecture being considered. See the next section for descriptions of the architectures):

Decoding accuracy using TPDN encodings

Left­to­right
Right­to­left
Bidirectional
Wickel
Tree
Bag­of­words

Autoencode Reverse Sort Interleave
0.00

0.25

0.50

0.75

1.00

5/1/2019 tpdn | Tensor product decomposition network

https://tommccoy1.github.io/tpdn/tpr_demo.html 7/9

Encoder: Decoder:

Copying

Type a sequence:

287679

287679

Reversal

Type a sequence:

287679

976782

Interleaving

Type a sequence:

287679

298776

Sorting

Type a sequence:

287679

267789

The left-to-right unidirectional roles also provide a good, but not quite as strong, approximation.

Meanwhile, the right-to-left unidirectional roles perform poorly.

This asymmetry suggests that the model is implementing what we call mildly bidirectional roles: the representations are

bidirectional in nature, but within this bidirectional role scheme the left-to-right direction is favored over the right-to-left

direction. This conclusion is in line with the observations made about the analogies above.

The fact that this copying RNN appears to be implementing bidirectional roles provides a possible explanation for why it

struggles with copying single-digit sequences. If a sequence is only a single digit long, then the bidirectional role scheme will

assign that digit the role (1,1). However, this role occurs very rarely in the training set, since there are so few single digits;

therefore, the RNN struggles with sequences involving this role.

Effect of training task

We can use the TPDN to delve deeper into different aspects of RNN training to see how those aspects affect the

representations that are learned. First, we can see how the training task affects the representations. So far we've focused on

one task (copying, aka autoencoding), but now we expand the set of tasks to include three others:

The following chart displays how the training task affects the learned representation (this chart also allows you to vary the

architecture being considered. See the next section for descriptions of the architectures):

Decoding accuracy using TPDN encodings

Left­to­right
Right­to­left
Bidirectional
Wickel
Tree
Bag­of­words

Autoencode Reverse Sort Interleave
0.00

0.25

0.50

0.75

1.00

Copy Reverse Sort

5/1/2019 tpdn | Tensor product decomposition network

https://tommccoy1.github.io/tpdn/tpr_demo.html 6/9

 Type a sequence:

2,8,7,6,7,9

2,8,7,6,7,9

 2,8,7,6,7,9

 2,8,7,6,7,9

words because it represents

which digits (“words”) are present

and in what quantities, but

ignores their positions.

 7 : r0 + 9 : r0

TPDN results

We evaluate the TPDN by seeing whether the RNN's decoder—which was trained on the encodings produced by the RNN

encoder, not the encodings produced by the TPDN—can successfully produce the correct output sequence when fed an

encoding from the TPDN. If it can, that is evidence that the TPDN is indeed providing a close approximation of the RNN

encoder.

For each of the six role schemes above, we �tted a TPDN using that role scheme onto our copying RNN. You can test out these

TPDNs in the following cell, which allows you to visually compare the vector encodings produced by the TPDN to the vector

encodings produced by the RNN encoder, as well as to see if the RNN decoder can successfully decode from the TPDN's

encoding:

The following chart gives the overall results. The bag-of-words bar cannot be seen because its value is essentially zero:

Decoding accuracy using TPDN encodings

The differences between role schemes may be hard to discern when only looking at the vectors (though upon closer inspection

differences can be found). However, looking at the output sequences or the results in the chart reveals the differences more

clearly. Some of the most salient points from the chart and the simulation are:

Bidirectional roles provide an extremely strong approximation of the RNN. Thus, the representations of this RNN can be

apprximated strikingly well with a Tensor Product Representation.

Choose a role scheme:

Left­to­right
Right­to­left
Bidirectional
Wickel
Tree
Bag­of­words

0.00

0.25

0.50

0.75

1.00

5/1/2019 tpdn | Tensor product decomposition network

https://tommccoy1.github.io/tpdn/tpr_demo.html 6/9

 Type a sequence:

2,8,7,6,7,9

2,8,7,6,7,9

 2,8,7,6,7,9

 2,8,7,6,7,9

words because it represents

which digits (“words”) are present

and in what quantities, but

ignores their positions.

 7 : r0 + 9 : r0

TPDN results

We evaluate the TPDN by seeing whether the RNN's decoder—which was trained on the encodings produced by the RNN

encoder, not the encodings produced by the TPDN—can successfully produce the correct output sequence when fed an

encoding from the TPDN. If it can, that is evidence that the TPDN is indeed providing a close approximation of the RNN

encoder.

For each of the six role schemes above, we �tted a TPDN using that role scheme onto our copying RNN. You can test out these

TPDNs in the following cell, which allows you to visually compare the vector encodings produced by the TPDN to the vector

encodings produced by the RNN encoder, as well as to see if the RNN decoder can successfully decode from the TPDN's

encoding:

The following chart gives the overall results. The bag-of-words bar cannot be seen because its value is essentially zero:

Decoding accuracy using TPDN encodings

The differences between role schemes may be hard to discern when only looking at the vectors (though upon closer inspection

differences can be found). However, looking at the output sequences or the results in the chart reveals the differences more

clearly. Some of the most salient points from the chart and the simulation are:

Bidirectional roles provide an extremely strong approximation of the RNN. Thus, the representations of this RNN can be

apprximated strikingly well with a Tensor Product Representation.

Choose a role scheme:

Left­to­right
Right­to­left
Bidirectional
Wickel
Tree
Bag­of­words

0.00

0.25

0.50

0.75

1.00

5/1/2019 tpdn | Tensor product decomposition network

https://tommccoy1.github.io/tpdn/tpr_demo.html 7/9

Encoder: Decoder:

Copying

Type a sequence:

287679

287679

Reversal

Type a sequence:

287679

976782

Interleaving

Type a sequence:

287679

298776

Sorting

Type a sequence:

287679

267789

The left-to-right unidirectional roles also provide a good, but not quite as strong, approximation.

Meanwhile, the right-to-left unidirectional roles perform poorly.

This asymmetry suggests that the model is implementing what we call mildly bidirectional roles: the representations are

bidirectional in nature, but within this bidirectional role scheme the left-to-right direction is favored over the right-to-left

direction. This conclusion is in line with the observations made about the analogies above.

The fact that this copying RNN appears to be implementing bidirectional roles provides a possible explanation for why it

struggles with copying single-digit sequences. If a sequence is only a single digit long, then the bidirectional role scheme will

assign that digit the role (1,1). However, this role occurs very rarely in the training set, since there are so few single digits;

therefore, the RNN struggles with sequences involving this role.

Effect of training task

We can use the TPDN to delve deeper into different aspects of RNN training to see how those aspects affect the

representations that are learned. First, we can see how the training task affects the representations. So far we've focused on

one task (copying, aka autoencoding), but now we expand the set of tasks to include three others:

The following chart displays how the training task affects the learned representation (this chart also allows you to vary the

architecture being considered. See the next section for descriptions of the architectures):

Decoding accuracy using TPDN encodings

Left­to­right
Right­to­left
Bidirectional
Wickel
Tree
Bag­of­words

Autoencode Reverse Sort Interleave
0.00

0.25

0.50

0.75

1.00

5/1/2019 tpdn | Tensor product decomposition network

https://tommccoy1.github.io/tpdn/tpr_demo.html 6/9

 Type a sequence:

2,8,7,6,7,9

2,8,7,6,7,9

 2,8,7,6,7,9

 2,8,7,6,7,9

words because it represents

which digits (“words”) are present

and in what quantities, but

ignores their positions.

 7 : r0 + 9 : r0

TPDN results

We evaluate the TPDN by seeing whether the RNN's decoder—which was trained on the encodings produced by the RNN

encoder, not the encodings produced by the TPDN—can successfully produce the correct output sequence when fed an

encoding from the TPDN. If it can, that is evidence that the TPDN is indeed providing a close approximation of the RNN

encoder.

For each of the six role schemes above, we �tted a TPDN using that role scheme onto our copying RNN. You can test out these

TPDNs in the following cell, which allows you to visually compare the vector encodings produced by the TPDN to the vector

encodings produced by the RNN encoder, as well as to see if the RNN decoder can successfully decode from the TPDN's

encoding:

The following chart gives the overall results. The bag-of-words bar cannot be seen because its value is essentially zero:

Decoding accuracy using TPDN encodings

The differences between role schemes may be hard to discern when only looking at the vectors (though upon closer inspection

differences can be found). However, looking at the output sequences or the results in the chart reveals the differences more

clearly. Some of the most salient points from the chart and the simulation are:

Bidirectional roles provide an extremely strong approximation of the RNN. Thus, the representations of this RNN can be

apprximated strikingly well with a Tensor Product Representation.

Choose a role scheme:

Left­to­right
Right­to­left
Bidirectional
Wickel
Tree
Bag­of­words

0.00

0.25

0.50

0.75

1.00

5/1/2019 tpdn | Tensor product decomposition network

https://tommccoy1.github.io/tpdn/tpr_demo.html 6/9

 Type a sequence:

2,8,7,6,7,9

2,8,7,6,7,9

 2,8,7,6,7,9

 2,8,7,6,7,9

words because it represents

which digits (“words”) are present

and in what quantities, but

ignores their positions.

 7 : r0 + 9 : r0

TPDN results

We evaluate the TPDN by seeing whether the RNN's decoder—which was trained on the encodings produced by the RNN

encoder, not the encodings produced by the TPDN—can successfully produce the correct output sequence when fed an

encoding from the TPDN. If it can, that is evidence that the TPDN is indeed providing a close approximation of the RNN

encoder.

For each of the six role schemes above, we �tted a TPDN using that role scheme onto our copying RNN. You can test out these

TPDNs in the following cell, which allows you to visually compare the vector encodings produced by the TPDN to the vector

encodings produced by the RNN encoder, as well as to see if the RNN decoder can successfully decode from the TPDN's

encoding:

The following chart gives the overall results. The bag-of-words bar cannot be seen because its value is essentially zero:

Decoding accuracy using TPDN encodings

The differences between role schemes may be hard to discern when only looking at the vectors (though upon closer inspection

differences can be found). However, looking at the output sequences or the results in the chart reveals the differences more

clearly. Some of the most salient points from the chart and the simulation are:

Bidirectional roles provide an extremely strong approximation of the RNN. Thus, the representations of this RNN can be

apprximated strikingly well with a Tensor Product Representation.

Choose a role scheme:

Left­to­right
Right­to­left
Bidirectional
Wickel
Tree
Bag­of­words

0.00

0.25

0.50

0.75

1.00

5/1/2019 tpdn | Tensor product decomposition network

https://tommccoy1.github.io/tpdn/tpr_demo.html 6/9

 Type a sequence:

2,8,7,6,7,9

2,8,7,6,7,9

 2,8,7,6,7,9

 2,8,7,6,7,9

words because it represents

which digits (“words”) are present

and in what quantities, but

ignores their positions.

 7 : r0 + 9 : r0

TPDN results

We evaluate the TPDN by seeing whether the RNN's decoder—which was trained on the encodings produced by the RNN

encoder, not the encodings produced by the TPDN—can successfully produce the correct output sequence when fed an

encoding from the TPDN. If it can, that is evidence that the TPDN is indeed providing a close approximation of the RNN

encoder.

For each of the six role schemes above, we �tted a TPDN using that role scheme onto our copying RNN. You can test out these

TPDNs in the following cell, which allows you to visually compare the vector encodings produced by the TPDN to the vector

encodings produced by the RNN encoder, as well as to see if the RNN decoder can successfully decode from the TPDN's

encoding:

The following chart gives the overall results. The bag-of-words bar cannot be seen because its value is essentially zero:

Decoding accuracy using TPDN encodings

The differences between role schemes may be hard to discern when only looking at the vectors (though upon closer inspection

differences can be found). However, looking at the output sequences or the results in the chart reveals the differences more

clearly. Some of the most salient points from the chart and the simulation are:

Bidirectional roles provide an extremely strong approximation of the RNN. Thus, the representations of this RNN can be

apprximated strikingly well with a Tensor Product Representation.

Choose a role scheme:

Left­to­right
Right­to­left
Bidirectional
Wickel
Tree
Bag­of­words

0.00

0.25

0.50

0.75

1.00

5/1/2019 tpdn | Tensor product decomposition network

https://tommccoy1.github.io/tpdn/tpr_demo.html 6/9

 Type a sequence:

2,8,7,6,7,9

2,8,7,6,7,9

 2,8,7,6,7,9

 2,8,7,6,7,9

words because it represents

which digits (“words”) are present

and in what quantities, but

ignores their positions.

 7 : r0 + 9 : r0

TPDN results

We evaluate the TPDN by seeing whether the RNN's decoder—which was trained on the encodings produced by the RNN

encoder, not the encodings produced by the TPDN—can successfully produce the correct output sequence when fed an

encoding from the TPDN. If it can, that is evidence that the TPDN is indeed providing a close approximation of the RNN

encoder.

For each of the six role schemes above, we �tted a TPDN using that role scheme onto our copying RNN. You can test out these

TPDNs in the following cell, which allows you to visually compare the vector encodings produced by the TPDN to the vector

encodings produced by the RNN encoder, as well as to see if the RNN decoder can successfully decode from the TPDN's

encoding:

The following chart gives the overall results. The bag-of-words bar cannot be seen because its value is essentially zero:

Decoding accuracy using TPDN encodings

The differences between role schemes may be hard to discern when only looking at the vectors (though upon closer inspection

differences can be found). However, looking at the output sequences or the results in the chart reveals the differences more

clearly. Some of the most salient points from the chart and the simulation are:

Bidirectional roles provide an extremely strong approximation of the RNN. Thus, the representations of this RNN can be

apprximated strikingly well with a Tensor Product Representation.

Choose a role scheme:

Left­to­right
Right­to­left
Bidirectional
Wickel
Tree
Bag­of­words

0.00

0.25

0.50

0.75

1.00

5/1/2019 tpdn | Tensor product decomposition network

https://tommccoy1.github.io/tpdn/tpr_demo.html 7/9

Encoder: Decoder:

Copying

Type a sequence:

287679

287679

Reversal

Type a sequence:

287679

976782

Interleaving

Type a sequence:

287679

298776

Sorting

Type a sequence:

287679

267789

The left-to-right unidirectional roles also provide a good, but not quite as strong, approximation.

Meanwhile, the right-to-left unidirectional roles perform poorly.

This asymmetry suggests that the model is implementing what we call mildly bidirectional roles: the representations are

bidirectional in nature, but within this bidirectional role scheme the left-to-right direction is favored over the right-to-left

direction. This conclusion is in line with the observations made about the analogies above.

The fact that this copying RNN appears to be implementing bidirectional roles provides a possible explanation for why it

struggles with copying single-digit sequences. If a sequence is only a single digit long, then the bidirectional role scheme will

assign that digit the role (1,1). However, this role occurs very rarely in the training set, since there are so few single digits;

therefore, the RNN struggles with sequences involving this role.

Effect of training task

We can use the TPDN to delve deeper into different aspects of RNN training to see how those aspects affect the

representations that are learned. First, we can see how the training task affects the representations. So far we've focused on

one task (copying, aka autoencoding), but now we expand the set of tasks to include three others:

The following chart displays how the training task affects the learned representation (this chart also allows you to vary the

architecture being considered. See the next section for descriptions of the architectures):

Decoding accuracy using TPDN encodings

Left­to­right
Right­to­left
Bidirectional
Wickel
Tree
Bag­of­words

Autoencode Reverse Sort Interleave
0.00

0.25

0.50

0.75

1.00

5/1/2019 tpdn | Tensor product decomposition network

https://tommccoy1.github.io/tpdn/tpr_demo.html 6/9

 Type a sequence:

2,8,7,6,7,9

2,8,7,6,7,9

 2,8,7,6,7,9

 2,8,7,6,7,9

words because it represents

which digits (“words”) are present

and in what quantities, but

ignores their positions.

 7 : r0 + 9 : r0

TPDN results

We evaluate the TPDN by seeing whether the RNN's decoder—which was trained on the encodings produced by the RNN

encoder, not the encodings produced by the TPDN—can successfully produce the correct output sequence when fed an

encoding from the TPDN. If it can, that is evidence that the TPDN is indeed providing a close approximation of the RNN

encoder.

For each of the six role schemes above, we �tted a TPDN using that role scheme onto our copying RNN. You can test out these

TPDNs in the following cell, which allows you to visually compare the vector encodings produced by the TPDN to the vector

encodings produced by the RNN encoder, as well as to see if the RNN decoder can successfully decode from the TPDN's

encoding:

The following chart gives the overall results. The bag-of-words bar cannot be seen because its value is essentially zero:

Decoding accuracy using TPDN encodings

The differences between role schemes may be hard to discern when only looking at the vectors (though upon closer inspection

differences can be found). However, looking at the output sequences or the results in the chart reveals the differences more

clearly. Some of the most salient points from the chart and the simulation are:

Bidirectional roles provide an extremely strong approximation of the RNN. Thus, the representations of this RNN can be

apprximated strikingly well with a Tensor Product Representation.

Choose a role scheme:

Left­to­right
Right­to­left
Bidirectional
Wickel
Tree
Bag­of­words

0.00

0.25

0.50

0.75

1.00

0

0.25

0.5

0.75

1

InferSent Skip-thought SST SPINN

Left-to-right

Right-to-left

Bidirectional

Tree

Bag-of-words

Points scored

0

0.25

0.5

0.75

1

InferSent Skip-thought SST SPINN

Left-to-right

Right-to-left

Bidirectional

Tree

Bag-of-words

Points scored

5/1/2019 tpdn | Tensor product decomposition network

https://tommccoy1.github.io/tpdn/tpr_demo.html 6/9

 Type a sequence:

2,8,7,6,7,9

2,8,7,6,7,9

 2,8,7,6,7,9

 2,8,7,6,7,9

words because it represents

which digits (“words”) are present

and in what quantities, but

ignores their positions.

 7 : r0 + 9 : r0

TPDN results

We evaluate the TPDN by seeing whether the RNN's decoder—which was trained on the encodings produced by the RNN

encoder, not the encodings produced by the TPDN—can successfully produce the correct output sequence when fed an

encoding from the TPDN. If it can, that is evidence that the TPDN is indeed providing a close approximation of the RNN

encoder.

For each of the six role schemes above, we �tted a TPDN using that role scheme onto our copying RNN. You can test out these

TPDNs in the following cell, which allows you to visually compare the vector encodings produced by the TPDN to the vector

encodings produced by the RNN encoder, as well as to see if the RNN decoder can successfully decode from the TPDN's

encoding:

The following chart gives the overall results. The bag-of-words bar cannot be seen because its value is essentially zero:

Decoding accuracy using TPDN encodings

The differences between role schemes may be hard to discern when only looking at the vectors (though upon closer inspection

differences can be found). However, looking at the output sequences or the results in the chart reveals the differences more

clearly. Some of the most salient points from the chart and the simulation are:

Bidirectional roles provide an extremely strong approximation of the RNN. Thus, the representations of this RNN can be

apprximated strikingly well with a Tensor Product Representation.

Choose a role scheme:

Left­to­right
Right­to­left
Bidirectional
Wickel
Tree
Bag­of­words

0.00

0.25

0.50

0.75

1.00

5/1/2019 tpdn | Tensor product decomposition network

https://tommccoy1.github.io/tpdn/tpr_demo.html 6/9

 Type a sequence:

2,8,7,6,7,9

2,8,7,6,7,9

 2,8,7,6,7,9

 2,8,7,6,7,9

words because it represents

which digits (“words”) are present

and in what quantities, but

ignores their positions.

 7 : r0 + 9 : r0

TPDN results

We evaluate the TPDN by seeing whether the RNN's decoder—which was trained on the encodings produced by the RNN

encoder, not the encodings produced by the TPDN—can successfully produce the correct output sequence when fed an

encoding from the TPDN. If it can, that is evidence that the TPDN is indeed providing a close approximation of the RNN

encoder.

For each of the six role schemes above, we �tted a TPDN using that role scheme onto our copying RNN. You can test out these

TPDNs in the following cell, which allows you to visually compare the vector encodings produced by the TPDN to the vector

encodings produced by the RNN encoder, as well as to see if the RNN decoder can successfully decode from the TPDN's

encoding:

The following chart gives the overall results. The bag-of-words bar cannot be seen because its value is essentially zero:

Decoding accuracy using TPDN encodings

The differences between role schemes may be hard to discern when only looking at the vectors (though upon closer inspection

differences can be found). However, looking at the output sequences or the results in the chart reveals the differences more

clearly. Some of the most salient points from the chart and the simulation are:

Bidirectional roles provide an extremely strong approximation of the RNN. Thus, the representations of this RNN can be

apprximated strikingly well with a Tensor Product Representation.

Choose a role scheme:

Left­to­right
Right­to­left
Bidirectional
Wickel
Tree
Bag­of­words

0.00

0.25

0.50

0.75

1.00

5/1/2019 tpdn | Tensor product decomposition network

https://tommccoy1.github.io/tpdn/tpr_demo.html 6/9

 Type a sequence:

2,8,7,6,7,9

2,8,7,6,7,9

 2,8,7,6,7,9

 2,8,7,6,7,9

words because it represents

which digits (“words”) are present

and in what quantities, but

ignores their positions.

 7 : r0 + 9 : r0

TPDN results

We evaluate the TPDN by seeing whether the RNN's decoder—which was trained on the encodings produced by the RNN

encoder, not the encodings produced by the TPDN—can successfully produce the correct output sequence when fed an

encoding from the TPDN. If it can, that is evidence that the TPDN is indeed providing a close approximation of the RNN

encoder.

For each of the six role schemes above, we �tted a TPDN using that role scheme onto our copying RNN. You can test out these

TPDNs in the following cell, which allows you to visually compare the vector encodings produced by the TPDN to the vector

encodings produced by the RNN encoder, as well as to see if the RNN decoder can successfully decode from the TPDN's

encoding:

The following chart gives the overall results. The bag-of-words bar cannot be seen because its value is essentially zero:

Decoding accuracy using TPDN encodings

The differences between role schemes may be hard to discern when only looking at the vectors (though upon closer inspection

differences can be found). However, looking at the output sequences or the results in the chart reveals the differences more

clearly. Some of the most salient points from the chart and the simulation are:

Bidirectional roles provide an extremely strong approximation of the RNN. Thus, the representations of this RNN can be

apprximated strikingly well with a Tensor Product Representation.

Choose a role scheme:

Left­to­right
Right­to­left
Bidirectional
Wickel
Tree
Bag­of­words

0.00

0.25

0.50

0.75

1.00

5/1/2019 tpdn | Tensor product decomposition network

https://tommccoy1.github.io/tpdn/tpr_demo.html 7/9

Encoder: Decoder:

Copying

Type a sequence:

287679

287679

Reversal

Type a sequence:

287679

976782

Interleaving

Type a sequence:

287679

298776

Sorting

Type a sequence:

287679

267789

The left-to-right unidirectional roles also provide a good, but not quite as strong, approximation.

Meanwhile, the right-to-left unidirectional roles perform poorly.

This asymmetry suggests that the model is implementing what we call mildly bidirectional roles: the representations are

bidirectional in nature, but within this bidirectional role scheme the left-to-right direction is favored over the right-to-left

direction. This conclusion is in line with the observations made about the analogies above.

The fact that this copying RNN appears to be implementing bidirectional roles provides a possible explanation for why it

struggles with copying single-digit sequences. If a sequence is only a single digit long, then the bidirectional role scheme will

assign that digit the role (1,1). However, this role occurs very rarely in the training set, since there are so few single digits;

therefore, the RNN struggles with sequences involving this role.

Effect of training task

We can use the TPDN to delve deeper into different aspects of RNN training to see how those aspects affect the

representations that are learned. First, we can see how the training task affects the representations. So far we've focused on

one task (copying, aka autoencoding), but now we expand the set of tasks to include three others:

The following chart displays how the training task affects the learned representation (this chart also allows you to vary the

architecture being considered. See the next section for descriptions of the architectures):

Decoding accuracy using TPDN encodings

Left­to­right
Right­to­left
Bidirectional
Wickel
Tree
Bag­of­words

Autoencode Reverse Sort Interleave
0.00

0.25

0.50

0.75

1.00

https://openreview.net/pdf?id=BJx0sjC5FX

