Overview

- The puzzle: How do recurrent neural networks (RNNs) use vectors of continuous values to represent discrete symbolic structures?
- Finding: RNNs trained on structure-dependent tasks learn to implicitly implement tensor product representations.

(2) Tensor Product Representations

- A principled method for representing compositional symbolic structures in vector space (Smolensky 1990)
- Represent the input with pairs of fillers and roles:

3,7,6 = <mark>3</mark>:first + <mark>7</mark>:second + <mark>6</mark>:third

- Each filler f_i and role r_i has a vector embedding
- The representation of the input is the sum of the outer products of each f_i and r_i : $\sum f_i \otimes r_i$

3 Tensor Product Decomposition

• Goal: Approximate an RNN's learned encodings (such as E below) with a tensor product representation

- **Approach:** (below, left) Train a model to generate tensor product representations that are close to the RNN's encodings
- Evaluation: (below, right) Pass this model's outputs to the RNN's decoder

Role Schemes

	3	I	I	6
Left-to-right	0		2	3
Right-to-left	3	2	I	0
Bidirectional	(0,3)	(1,2)	(2,1)	(3,0)
Wickelroles	#_I	3_I	I_6	I_#
Tree	L	RLL	RLR	RR
Bag-of-words	r ₀	r ₀	r ₀	r ₀

Tree used for tree roles

Tree/Uni

Tree/Bi

RNNs implicitly implement tensor-product representations: Uncovering compositionality in neural network representations

R.Thomas McCoy,¹ Tal Linzen,¹ Ewan Dunbar,² and Paul Smolensky^{3,1} Johns Hopkins University, ²CNRS - Université Paris Diderot - Sorbonne Paris Cité, ³Microsoft Research Al

Tree/Tree

6 Sentence Encoder Experiments

	Model Type	Training task
InferSent	BiLSTM	Natural Language Inference
Skip-thought	LSTM	Previous/next sentence prediction
SST	Tree	Sentiment prediction
SPINN	Tree	Natural Language Inference

- model and its tensor product approximation
- have robust representations of structure:

Conclusion

- encoding compositional structure.
- evidence of compositional structure
- for studying vector representations

Acknowledgments

opinions are our own.

Link to paper

• <u>https://openreview.net/pdf?id=BJx0sjC5FX</u>

• Compare outputs of classifiers applied to a sentence encoding

• All 4 models are reasonably well approximated with nonstructure-sensitive bag-of-words roles, suggesting they do not

• RNNs trained on directly structure-dependent tasks can be well-approximated by tensor-product representations, suggesting that some form of this representation is their solution for

• 4 popular sentence encoding models did not display such clear

• Overall, tensor product decomposition is a versatile technique

• This material is based upon work supported by the NSF GRFP, an NSF INSPIRE grant, an ERC grant (BOOTPHON), and ANR grants IEC, PSL*, GEOMPHON, USPC, and EFL.All